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ABSTRACT 

The  recently developed universal  form of the two-body 
problem  involves  several  transcendental  functions.  Since 
these  functions a r e  evaluated so frequently, it is worthwhile 
to  develop  approximations  that  minimize  the  number of 
arithmetical  operations  required.  This  paper  presents  sev- 
eral   such approximations,  based on theories of Chebyshev 
and Knuth, with  bounds for  the  errors  incurred when using 
them. 
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OPTIMAL  COMPUTING FORMS FOR THE 
TWO-BODY C AND S SERIES 

by 
C. R. Herron, E. R. Lancaster, and W. R. Trebilcock 

Goddard Space Flight Center 

INTRODUCTION 

The  classical  solutions of the two-body problem  separate  naturally  into  the  three  cases of el- 
liptic,  parabolic, and hyperbolic  motion,  the  mathematics  being  considerably  different  for  each 
case. A unified  formulation is possible,  valid  for all three  cases, if  certain  transcendental  func- 
tions, which  we call  the c and s functions, a r e  introduced. 

The  unified  formulation is fully  developed by Battin  (Reference 1) and  will not concern us  here. 
The  purpose of this  paper is to  present  approximations  for  the C and s functions  and  their  deriva- 
tive  functions, which reduce  significantly  the  computation  times  required for their  evaluation when 
compared to  those  required by Taylor series expansions. 

THE C AND S FUNCTIONS 

The C and S functions a r e  defined by 

C(x) = (1 - cos x1/2)/x , x > o  (3) 

= [I - cosh (-x)~/’]/X x < o .  (4) 

Since  these  functions are indeterminate  for X = 0 and present  accuracy  problems when eva1.u- 
ated  in  the neighborhood of X = 0, it is natural to replace the above forms by the following series,  
convergent  for all values of X: 

S (x)  = 
i= 0 

( 2 i  + 3) !  
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For  large  values of X, the  convergence of these series will be  slow. It is then  convenient  to 
use  the following  reduction  formulas,  easily  derived  from  Equations 1 through 4: 

A(x) = 1 - xS(x) , 

2C(4x) = [A(.)]' .( 

4S(4x) = S(x)  + A(x)C(x) 

THE C' AND S' FUNCTIONS 

The  derivatives s '  ( X )  and c '   ( X )  are needed  for  certain  problems of orbit  determination, guid- 
ance,  and  optimization.  From  Equations 1 through 4 we obtain 

S '  ( x )  = [ C ( X )  -3S(x)]/2x , 

C' ( x )  = [A (x )  - 2C(x)]/2x . 

These  forms 
representations. 

suffer  accuracy  problems  in  the  neighborhood of X = 0, again  forcing  us  to  series 
Differentiating  Equations 5 and 6, we have 

S '  ( x )  = 
; ( -x>'  , 

(2i + 3 ) !  
i =  1 

C' ( x )  
i ( - x ) i  , 

i =  1 
( 2 i  + 2 ) !  

convergent  for all values of X .  

For  large  values of X ,  the  following  reduction  formulas  (obtained by differentiating  Equations 7, 
8, and 9) a r e  useful. 

C' (4x)  = -A(x)B(x) , (13) 

4s'   (4x)  = S '  ( x )  + A(x) C' ( x )  - B(x)  C(x) . (1 4) 
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THE  FIKE-KNUTH  ALGORITHM 

Our first step  in  obtaining  economical  computing  forms  for  Equations 5, 6, 10, and 11 was 
the  construction of sixth  degree  polynomial  approximations  on  various  intervals in the  sense of 
Chebyshev. In other  words,  these  polynomials  minimize the magnitude of the  maximum  error on 
the  interval.  The  program  to  accomplish  this  was  written by the  third  author,  based on ideas of 
Stoer  (Reference 2). The  coefficients of these  polynomials are given in  the  section  entitled  Numer- 
ical Results. 

Assume  that  the  approximating  polynomial  has the form 

P(X> = a. + a l  x + a 2  x’ + a 3  x3 + a4 x4 t a5 x5 + a6x6 . (15) 

The  evaluation of Equation  15 by the  usual method of nested  multiplication  requires six multi- 
plications  and six additions.  However, by using  recently  developed  polynomial  evaluation  methods 
(References 3 and 4), Equation  15  can  be  evaluated with four  multiplications  and  seven  additions. 
The  form and parameters  for  the  algorithm, as it applies  to  our  functions, a r e  given  in  the  Numer- 
ical  Results  section. 

In the  following  description of the algorithm, a6 is assumed to  be  positive. If a6 is negative, 
a minor  change is necessary. 

Fike’s  modification of Knuth’s  method begins with a conversion:  letp = ‘fi, and let ck = ak/pk 

for k = 0, 1, - ., 5. Then  compute 

D”  c 2  - p C ‘  , 

B’ c 4  - p(p +I) , E’ = 2D’ - B’ + 1 , 

Find a real  root q of the  cubic  equation* 

‘See Appendix A. 
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and compute 

C = p - 2 A ,  

B = q -  2 A C - A 2  , 

D = C’ - q ( 1  t D ’ )  - q2 - D” - A Z ( l + C )  - , 

E = q 2  -t qD’ t D ”  - (Az +B)C , 

F = c o  - ( q 2 + q D ’ + D ‘ ’ ) [ C ” q ( l t D ’ ) - q 2 - D ” ]  . 

Then  our  polynomial  can  be  evaluated as follows: 

In case a 6  0, let T ( x )  = -P(x)  and perform all the  steps above,  except  the  last,  for T ( x ) .  The  last 
step should  be 

P ( x )  = - [T(x) ]  = ( q , - t q 3  + D )  ( - q 3  - E )  - F 

If the  machine  being  used  has a “load  negative“  feature  that is equivalent  in  execution  time  to 
“load  positive,” and i f  subtraction is likewise  equivalent  to  addition,  then  this  modification is equiv- 
alent  to  the  original. 

A s  Fike  points  out,  his  method is a slight  variation of that of Knuth (Reference 4), and since 
Knuth’s  method was inspired by Motzkin (Reference 5), the  three  types  bear a strong  family  re- 
semblance.  Each  begins  with a polynomial  in  the  form of Equation 15 with a 6  = 1, and solves  for 
the  parameters  in  the  final  evaluation  scheme by expanding the  scheme  into a sixth degree poly- 
nomial  and  equating its coefficients  with  those of Equation 15. To  admit  treatment of the  general 
polynomial of degree six, however,  some  transformation  must  be  made so that a6 = 1. The  most 
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straightforward way is making 

and  then  applying any of the  three  methods  to Q ( x ) ,  adding an extra  step at the last in  multiplying 
the  result by a,. Fike  specifies a different  sort of transformation;  his  may  be thought of as con- 
verting Equation 15 into 

a 5  a 4  a 3  a 2  a l  

P P4 P3 P P 
R ( x )  = X + ~ x 5 + - x 4 + - X 3 + y X 2 + - X + a 0  

Again, any of the three  methods apply to R (  X ) ,  and values of P(x)  are obtained by using PX in  the 
scheme  for ~ ( x ) ,  since R(PX) = P ( X )  . 

This  transformation, though a bit more  complicated, is admirably  suited  to  our  particular  prob- 
lem.  The  type of polynomial with which  we are  dealing  has  the not  uncommon characteristic that 

and, in addition, I a 6 )  is very  small.  For  example,  suppose  the  coefficients of form (15) a r e  

a 4  = + .28 x , 

a 3  = - .25 x , 

a 2  = + .14 x 

a l  = - . 4 2  x 10" , 

a,, = + .50 

If we use  the  division  transformation,  the  coefficients bi  of Q(x) a r e  

b, = + 1.0 , 

b5 = - .18 x lo3 , 
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b, = + . 2 4  x lo5 , 

b, = - . 2 2  x 107 , 

b, = + . 1 2  x lo9 , 

b, = - . 3 6  x 10,' , 

bo = + . 4 4  x 10,' . 

Here  the  errors  in the numbers a i  have  become  greatly  magnified;  worse  yet,  the  arithmetic of 
parameter  production  using  the  large  numbers b i  is likely  to suffer the  effects of large  error  prop- 
agation.  In  contrast, Fike's transformation  gives  us 

C 6  = 1 ,  

c 5  = - . 2 7  x 10, , 

c 4  = + .s4 x 10' , 

c, = - . 7 3  x 10' , 

c 2  = + . 6 2  x 10, , 

c 1  = - . 2 8  x 10' , 

c o  = .so 

These  numbers of manageable  size  lend  themselves  very  well  to  whichever  scheme we choose.  For 
comparison,  the two transformations above were  evaluated by the Knuth algorithm  for 40 points 
over  the  interval [ -  1, + 11, and the  differences between these  values  and  the  true  values of the 
polynomial  were  obtained. For the  division  transformation,  the  absolute  value of the  maximum 
error   was ,92 X 10-l2;  for  the  Fike  transformation,  this  was .16 X 10-l4, a reduction by a factor 
of more  than 500. Several  other  test  cases  were  run, with results  that  apparently  verify  the  conclu- 
sion  that  the  Fike  transformation  used on this type of polynomial has a very  definite  advantage. 
There  are, of course,  other  transformations  that  produce  polynomials  in which a 6  = 1. In general, 
one  should use  the  transformation that keeps  the  coefficients of the  transformed  polynomial as small 
as possible. 
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NUMERICAL  RESULTS 

The  four  approximation  polynomials  were  generated  for  each of the  intervals [-  1, + 11, [- 2, + 21, 
[- 4, + 41, [ -  16, + 161, converted  to  Equation  15  and  parameters  for  the  Fike  evaluation  scheme 
were obtained. In each  case,  the  values  given by the  final  scheme  were  tested  against  "true"  values 
of the  original  function  for all multiples of .002 in  the  interval  concerned.  The  true  values  came 
from  expanding  the  power  series of the function (1) for enough terms  to  guarantee  that  the  relative 
error  from  truncation would  be less  than  10- 15. The  following tables exhibit, for  each of the six- 
teen  functions  considered,  the  coefficients a i  for  Equation  15,  the  parameters A, By C, D, E,  and F 
for  the  Fike  scheme, and  the  maximum  absolute e r rors   for  both methods.  For  comparison, a de- 

r(,, gree 4 approximation  polynomial was evaluated by both methods for  the  functions C(X)  and s ( ~ )  on 
the  interval [- 1, + 11, and  the  results  are  presented  here  also. 

Goddard Space  Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, March 27, 1968 
188-48-01-05-51 
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h = l  h=2 

a. = +O .4999999999999998 X 10' a. = + 0.4999999999999993 X loo 
a, = - 0.4  166666666667 176 X 1 0' a, = - 0.41666666667001  18 X 10" 
a2 = +o. 1388888888888999 X a2 = + 0.1388888888892785 X 1 0-2  
a 3  = - 0.2480158725995993 X a3 = - 0.2480158663241807 X 
a4 = +0.2755731917059028 X = +0.2755731881710992 X 

a5 = - 0.2087759200397967 X 1 0'8 a5 = - 0.20880  102772683 15 X 10- 
a6 = +O. 114713410831  1665 X 10"' a6 = +O. 1147215380312168 X 10"' 

Ma= 0.763 X 1 O-l5  Ma= 0.956 X 

a4  

h = 4  

- - + 0.499999999999840 1 X 10' 
a = - 0.4166666668808485 X 10' 
a2 = +O. 1388888889138842 X 
a 3  = -0.2480157659289839 X 
a4 = + 0.275573  12725  13377 X 1 O'6 
a5 = -0.2089014196095935 X 

a6 - - +O. 1147636934013430 X 10"' 
M a =  0,122 X 10"' 

h =  16 

a. = + 0.4999999894793  170 X 10' 
al = -0.4166675473500692 X 10" 
a2 = +O. 1388889916034137 X 
a3 = - 0.24798836331  19184 X 
a4 = +0.2755565077419917 X 

a5 = - 0.2  109  148028487573 X 10- 
a6 = +O. 1156091702389399 X 10"' 

M a =  0.202 X 10-6 
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h = l  

A = + 0.45  1340858262789 1 X 10’ 
B = + 0.3744865  190483202 X 10 
C = - 0.2769272800754423 X 10 
D = + 0.9433565393074166 X 10 
E = + 0.1055413968372178 X lo2 
F = +0.6288190624578802 X 

M = 0.583 X 

h=4 

A = + 0.450701  9590625572 X 10’ 
B = +0.3740448131455307 X 10’ 
C = -0.2768317205414987 X 10’ 
D = + 0.941  4899439055362 X 10 ’ 
E = +O. 105370131  1149719 X lo2 
F = + 0.6272339359526764 X 1 Om2 
M = 0.122 X 10”’ 

h=2 

A = + 0.45  12008438957284 X 10’ 
B = + 0.3743936586512442 X 10’ 

D = -I- 0.9429681327692907 X 10 
E = + 0.1055053  194443676 X 1 O2 
F = +0.6284207351324604 X 

M = 0.994 X 

C = - 0.2769076432349482 X 10 

h =  16 

A = + 0.4405766736959988 X 10: 
B = + 0.3669989101432331 x 10 
c = - 0.2752824996097087 X 10; 

E = +o. 1026464040151929 X IO2 
F = +0.6161613003116790 X 

D = +0.9117484138879304 X 10 

M = 0.202 x 
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s(X)=ao +a,x +a2x2 +a3x3 +a4x4 +agx5 +agx6 o n  [- h, h] 

h = l  

a. = + 0. 1666666666666665 X 1 0' 
a = - 0.8333333333333568 X 1 0-2 
a2 = + O s  1984126984129264 X 
a3 = - 0.2755731919939401 X 
a = + 0.25052  10785999854 X 10-i 
a5 = - 0. 16059537653  19026 X 10- 
a6 = Jr 0.7650283228592385 X 10- l2 

Ma = 0.555 X 

h = 4  

a. = + 0.1666666666666581 X 100 
a = - 0.8333333334593  103 X 1 0-2 
a 2  = +O.  1984126984258407 X 
a3 = - 0.2755731292513204 X 

a4 = +0.2505210496761327 X 

a5 = - 0.1606691704048320 X 1 0 - 9  
a6 = +0.7650122280184766 X 

M, = 0.720 X 

h = 2  

a0 = + 0. 1666666666666663 X 1 Oo 
a = - 0.833333333335292 1 X 1 0-2 
a2 = + O .  1984126984129057 X 
a3 = -  0.275573 1 8830773  17 X 1 0- 
a 4  = +O.  2505210816170333 X 

a5 = - 0.1606101  133600677 X 10 - 9  
a 6 = f 0.7647926042737674 x 10- 

M ~ =  0.566 x 10-74  

h = 16 

a0 =+  0.1666666661  133027 X 10' 
a = - 0.8333338509758059 X 1 0'2 
a2 = + 0.1984127524406629 X 

a3 = - 0.27555702  14946503 X 1 0 - 5  
a4 = + 0.2505123071826789 X lom7 
a5 = - 0.1618528418504030 X 
a6 =+0.7694603615375217 X 

Ma = 0.118 x 
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h = l  h = 2  

A = + O .  1030541  110544949 X 10’ A = + 0.1028274494783523 X 10’ 
B = + O .  1357446199107850 X 10’ B = + 0.1356879505417743 x 10’ 

D = +Q. 18039606  16654583 X 10 D = + 0.1802832347589989 X 10’ 
E = +0.2062171852872241 X 10 E = + 0.2060949727430426 X 10’ 
F = +0.2130010466488949 X 10” F = + 0 . 2  128753997322974 x 10‘ ’ 
M = 0.236 X M = 0.808 X 

C = -0.1709888012144409 X 10’ C = - 0.170978463 1095070 X 10’ 

h = 4  

A = + 0.1026453527945748 X 10’ 
B =+0.1356011711587295 X 10’ 

D = + O n  1800557277079013 X 10’ 
E = + 0.2059246874696585 X 10’ 
F = +0.2125209137884825 X 10” 

M = 0.722 X 

C = - 0.1709549340846876 X 10’ 

h =  16 

A = + 0.9898746283297480 X 10- ’ 
B = + 0.1338586121335949 X 10’ 
C - 0 .  17047561  86376375 X 10’ 
D = + 0. 1754906650979839 X 10’ 
E = +  0.2025050653157090 X 10’ 
F = + 0.2056593593968585 X 10- 

M = 0. 118 X 
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h = l  

a 0 = - 0.4166666666666430 X 10- 
a l  =+0.2777777778467318 X 
a2 = - 0.1488095238678453 X 1 0- 
a3 =+0.6613751098214413 X 
a4 =-0.2505208412532178 X 
a5 =+0.8269965205281566 X 
a 6  =-0.2412214891589441 X 

Ma= 0.217 X 

h = 4  

a. = - 0.4166666651  125364 X 10" 
a = + 0.2777780643726382 X 1 0-2 
a2 = - 0.1488097663598733 X 1 0-3  
a3 = +0.6612326049924104 X 
a4 = - 0.2504581368842600 X 
a5 = + 0.8437138609417991 X 
a 6 = - 0.2463  133603265637 X 10- 

Ma= 0.320 X lo " *  

h = 2  

a0 = - 0.4166666666606742 X 10" 
a = +O. 2777777822034584 X 1 O-' 

a2 - - - 0.1488095275535492 X 1 0- 
a3  = +0.6613668137463213 X 

a 4  
= - 0.2505171918626241 X 

a 5  
= + 0.8303  136595603477 X 10- 
= - 0.2422316681583509 X a6 

M a =  0.251 X 

h =  16 

a. = - 0.4166666641763858 X 10- 
a = + 0.2777780078584500 X 1 0-2 
a2  = - 0.744047862  1862503 X 1 O m 4  
a3 = +O. 1102220894089232 X lom5 
a4 = - 0.1043798352532477 X 
a5 = + 0.693855707  1056230 X 10"' 
a6 = - 0.3366982823031 963 X 1 0-l2 

Ma= 0.527 X l o - *  
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h = l   h = 2  

A = + 0.642 1 500675794880 X 10 - ’ A = + 0.641 55962485856 10 X 10 - ’ 
B = +0.9631412054424315 X 10’ B = + 0.9629599640982438 X 10 ’ 
C = - 0.148537893568  1960 X 10 ’ C = - 0.1485350658374242 X 10 ’ 
D = + 0.1206516480446427 X 10 ’ D = + O .  1206153148806730 X 10’ 
E = + O .  1262370275488431 X 10 ’ E = + O .  1262088821410514 X 10 
F = + 0.2235785774036898 X 10 - 2  F = + 0.2230745797490601 X 10 -2 

M = 0.179 x 1 0 - l ~  M = 0.268 X 

h = 4  

A = +0.6405925631551870 X 10” 
B = +0.9624584033933687 X 10 ’ 

C -0.1485269967153406 X 10’ 
D = + O .  1205018912730453 X 10’ 
E = + O .  12613947171  19364 X 10’ 
F = +0.2210887038704210 X lo-* 

M = 0.320 X 10”’ 

h =  16 

A =+0.6208183431484613 X 10 - ’  
B =+0.9523193847619871 X 10; 
C = -0.1483582934430130 X 10 
D = +  0.1182131  124018069 X 10 ’ 
E = + 0.1247277466997771 X 10 ’ 
F = + 0.1829570481293727 X 10 - *  
M = 0.527 X 
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h = l  h=2 

a. = - 0.83333333333332 10 X 10 -2  
a l  = +0.3968253968616768 X 
a2 = - 0.1653439153716376 X 
a 3  = +0.6012503110063301 X 

a4 - - -0.1927084107177350 X 
a5 =+0.5511761621292874 X 

a6 = -0.1418571972378231 X 10”O 
Ma= 0.260 x 1 0”’ 

h=4 

a0 = - 0.8333333325953303 X 10 - 2  

a l  = +0.3968255472561213 X 10 - 3  
a 2  = - 0 1653440305444520 X 10 - 4  

a3 - - +Oh01 1754909568150 X 10 - 6  
a 4  = -0.1926786201990815 X 10 -7 
a5 = +0.55995768 1 1597955 X 10 - 9  
a6 = -0.1442776137237285 X 10”O 
M ~ =  0.168 x 1 0 - 1 3  

a. = - 0.8333333333304809 X 
a l  = +0.3968253991531185 X 
a2 = -0.1653439171256403 X 
a3 =+0.6012459474285134 X 
a4 = - 0.1927066737597982 X 1 0-7 
a5 = +0.5529210296030711 X 
a6 = -0.142338131  1296310 X 10”O 

M a =  0.134 X 10”’ 

h = 16 
a. = - 0.833333332 1 480760 X 1 0-2 
a l  = + 0.3968255  178485000 X 1 O’3 
a 2  = -0.826719692442379 X 
a3 = + 0.1002046526767437 X 1 0-6 

a4 - - -0.8029333915166488 X 
a5 = +0.4617817733427159 X lo-” 
a6 = -0.1978183008506138 X 

Ma= 0.277 X 
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h = l   h = 2  

A =-0.4272502910304863 X IO-’ 
B =+0.4460409572215307 X IOo 
C = -0. I020276052465536 X IO’ 
D =+O. 4064530281034859 X IOo 
E =+O. 3450015283629582 X IOo 
F =+0.2885054406289098 X 

A =-0.4272336986330691 X IO- ’ 
B =+0.4460090638507059 X IOo 
C =-0. IO20282840851638 X IO’ 
D =+O. 4064007086884238 X IOo 
E =+0.3449898120978949 X IOo 
F =+0.2883373149053849 X 

M= 0.529 X10- l6  M= 0.182 X 

h = 4  

A = -0.4274056995233864 X I O -  ’ 
B =+0.4458621272744412 X IOo 
C = -0.1020307887595762 X IO’ 
D =+0.4061739766937458 X IOo 
E =+0.3449170623874602 X IOo 
F =+0.2876661053629565 X 

M= 0.169 X10-13 

h = 16 

A = -0 43 I0245077956 I52 X IO- ’ 
B =+0.4428994350437274 X IOo 
C =-0.1020789569928175 X 10’ 
D =+0.4016042135773923 X IOo 
E =+0.3434241762739658 X IOo 
F =+0.2744481265299470 X 

M= 0.277 X10-9 
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P( X )  = ao+alx+a2x*+a3x3+a4x4 

C ( X ) # 4  ["/+'] S ( X ) # 4  [ - I ,  + 11 
a. =+0.5000000000007167 X 100 a = + 0.1666666666667 1 42 X 1 Oo 
a, = - 0.4166666601424471 X 10" a l  = -0.8333333283147393 X 

a 2  = + 0.1388888879568642 X 1 0-2 a2 =+O. 1984126977913694 X 
a3 = -0.2480419696201834 X a 3 = - 0.2755932664326337 X IO - 5  

a4 = + 0.2755932644579228 X 1 0 - 6  a = + 0.2505344666229896 X 1 0-7 

M, = 0.130 x 10-9 Ma = 0.100 X 10"' 

C ( X ) # 4  [ - l /  +1] S ( X ) # 4  E l /  +1] 

A =+0.2291221893900772 X 10- A =+O. 1258104947765253 X 10" 
B = -0.7655416156428518 X I O o  B = -0.5959855810891701 X 10' 
C = + 0.2592589041 826887 X 10' C = + 0.1104585254341674 X l o o  
D = + 0.401 1554686880556 X 10' D = + 0.2038526154314646 X 100 
E = - 0.3345008393894142 X 10' E = - 0.9365973340739070 X 10" 

M = 0.130X M = 0.100 X 10"' 

16 



REFERENCES 

j Battin, R. H. ,  "Astronautical Guidance," New York: McGraw-Hill, 1964. , 

Stoer,  J., "A Direct Method for Chebyshev Approximation by Rational Functions," J. ACM 
I 11(1):59-69, January 1964. 

I 
I tines," Comm.  ACM 10(3):175-178, March 1967. 

I 

! 
I Fike, C. T., "Methods of Evaluating Polynomial Approximations in Function Evaluation Rou- 

Knuth, D. E., "Evaluation of Polynomials by Computer," Comm. ACM 5(12):595-599,  December 
1962. 

Todd, J., "Motivation for Working in  Numerical  Analysis," Comm. Pure and AD@. Math. 8:98- 
100, 1955. 

17 



and since v and t have  the  same  sign, we have 

This  simply  says  that  the  length of the  initial  bracketing  interval is less than, or  equal to, the  mag- 
nitude of the  small end; in  turn,  this  means  that  the  large end of the  interval is at  most  twice  the 
magnitude of the  small end. 

Now, consider how the endpoint values would be  represented  in  floating-point  binary  arithmetic 
(normalized)  with  an  r-bit  fraction. If the  difference  between their binary  exponents is at most 1 
(which is what we are getting at above), then it can  be  seen  that  the  number of distinct  points  in  the 
initial  bracketing  interval is at most 2 r .  Therefore,  the  number of interval-halving  iterations 
needed-that is, the  number of t imes one  reduces  his  choice of points  in  the  interval by one-half- 
is at most r .  Moreover, it often turns  out  that f is nearly  (or  exactly)  zero at an end  point of one 
of the  half-intervals, so that r i terations  are not  always  needed. 

We have  treated  the  special  case 1 t I 5 IvI , but we need  not restrict  ourselves to it. The  number 
of interval-halving  iterations  needed  depends upon the size of t and, if one is willing  to  iterate a 
bit  more,  he  can  find  the  initial  bracketing  interval  more  quickly by increasing t ;  the  converse of 
this  also holds. 
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